

Introduction

- Venue, loos, escapes, contacts.....
- Workshop outline
 - Key concepts
 - Thresholds for intervention
 - Key epidemiological aspects
 - Metrics for diagnostic test performance
 - Diagnostics available
 - Review of science
 - Case study
 - Typical testing scenarios and some estimated costs
 - Work through some examples
 - Conclude

Acknowledgements

The material we cover this afternoon has accumulated over many years by a range of experts in diagnostics and Johne's disease. In particular an acknowledgement of support from

- Disease Research Laboratory, University of Otago
- EpiCentre, Massey University
- AgResearch
- Canterbury Health Laboratory
- AbacusBio Ltd
- Johne's Disease Research Consortium

Key concepts

- Youngest stock by far most susceptible, out to ~ 12 months old
 - Keep them away from MAP and there is no problem
- Keep a closed herd
 - Reality is purchase minimal risk stock
- Blood testing in diseased herds will help if used right
 - Get expert advice to ensure cost-effectiveness
- One 'super-shedding' deer can ruin a lot of effort
 - The amount of bacteria shed in some cases is hard to believe...

Nature of JD

Shedding spectrum

- How much is too much?
 - Pass through
 - Mild
 - Medium
 - Max
 - Log scale increases in shedding rate
 - Consider that ~60+ of deer on a property with disease may be culture positive, irrespective of disease levels
 - 10,000 or more organisms (by qPCR) typically accepted as confident the animal is actively shedding

Super shedding

- Somewhat dependent on disease levels for farm in question
- $\bullet\,$ 9 months old minimum age, recommended for major issue farms
 - Going into winter to minimize seasonal impact on clinical rate
- Post winter for farms with less issue more time for disease and immune response to develop with winter
- Overall minimizing contamination
- Of course can qPCR at any time

300,000bugs/g looks a lot

But it's all relative

Shedding over time

Status depends on time and test type

Does it come back?

• If we:

Controlled clinical losses

Achieved a declining JD-suspect lesion rate in processed deer

• Reality is purchase minimal risk stock

Keep essentially a closed herd (except stags)

• Would JD levels rebuild in the absence of testing?

Where and when might we intervene

Summary of JD control in deer

- A risk based approach to managing exposure
 - Present on most farms
 - Serious issue in small proportion of herds
 - Point at which decide to intervene is personal
 - Experience shows >\$4/deer stock unit losses often a trigger
 - Intervening directly in fawn management not feasible
 - Reduce contamination by removing highly infectious deer
 - Substantial reduction in losses usually achieved in 1-3 years
 - Depends on intensity of intervention
 - Trickle on effect of JDSLN can extend years

JDSLN rate by farm

On-farm economic cost

Key question: seeking what?

- Defining condition of interest is essential
 - MAP all but ubiquitous
 - Deer with MAP?
 - Normal looking deer infected with MAP?
 - Sub-clinical Johne's disease
 - Clinical Johne's disease
 - Differential diagnoses?
 - Direct costs of...
 - Repercussions of results...

Metrics 1

- Sensitivity
- Specificity
- Predictive values: influenced by prevalence, Se & Sp are not.

Metrics 2

- Effect of combining tests
- Effect of repeat testing

Sensitive & specific

Sensitive but not specific

Specific, not sensitive

Paralisa picking 10,000+

As a selection process

- Contend with imperfect specificity
- · Get equivalent money for test pos and neg
 - Provided source of replacements to maintain capital stock
 - Use as last step in selection process of R2 hinds
 - Test during peak schedule if possible
 - Test pregnant R2s up until September 30 to enable transport schedule is high then
- CRITICAL QUESTION: Opportunity cost of culled false positives
- Stag pre-sale testing over 3 years
 - Condition of interest: minimal chance of developing disease

Diagnostic options

Diagnostic options

- Diagnostics a little theory but mostly practicalities
 - Types of diagnostics
 - Pros and cons
 - Reading test results
 - Using appropriate tests
 - Useful materials and resources
 - · Biological limitations of testing

On-farm post mortems

- Cheap for farmers
- Easy to organise
- Timely
- Moderate sensitivity
- Easily increase sensitivity with vet and/or lab input
- Valuable first step in surveillance

ELISA

- Well established in deer industry and beyond
- Low cost
- Quick
- Measures immune response as proxy for disease/exposure
- Useful performance when used appropriately
- Subjective interpretation of results
- Offered by Disease Research Lab, Otago University
- Offered by Canterbury Health Laboratories
- Gribbles and NZ Vet Path
- DRL ~ \$15 per test plus collection and shipping
- Following graphs are from DRL

qPCR

- · Well established but seldom used
 - Quick
 - High specificity, high sensitivity
 - Measures actual shedding directly
 - Requires standardized methodology
 - Ideal back-up test for high value animals or uncertain Paralisa results
 - Pooled option available
 - \$50 + collection and shipping
 - Offered by DRL
 - Massey developing their own

Culture

- Traditionally the definitive Gold Standard for MAP
- High sensitivity, very high specificity
- Comparatively slow (up to 16 weeks for low CFUs)
- Valuable research tool
- Limited supplies of BACTEC media
- General transition from culture to qPCR
- Offered by AgResearch Wallaceville

Surveillance data

- JML surveillance database
- 3.7 million deer, >99% of production since 2006
- AsureQuality routine inspection/recording of JDSLN
- Johne's disease suspect lesions
- Not confirmed as MAP
- Very low sensitivity, low specificity
- Low cost built in to national JD control programme
- A useful component of an on-farm JD investigation

JD-like lesions

Review of science

- Several papers and projects on diagnostics for JD in deer.
- Each one an important part of the optimized testing puzzle
- Take a quick look a the contribution of each one and some of the strengths and weaknesses
- Good demonstration of the evolution of the thinking on this topic
- Converge to a practical understanding of test performance

Review: Griffin et al 2005

- Methods: positives: 102 suspected JD deer from >10 farms controls: 508 deer from 5 farms with no history of JD Analysed with on-line ROC curve programme
- Results: Se=85%, Sp=99.8% when PPDj and PPAg use in series at cut point of 50
- Case study (434 hind herd) using ELISA test-and-cull for 4 years, reactivity dropped from 40% to >3%, production increased and deaths reduced in young deer twice tested negative

Review: Griffin et al 2005

• In support -

- Shows the test can identify clinical JD
- Specificity appears high in control group
- Evidence for performance increase in test negative young deer

• In critique -

- · Tested population not representative of wider deer industry
- Nature of test population leads to exceptional performance of test
- No measures of variability around test performance estimates
- No measures of variability around animal performance estimates

Review: Stringer et al 2012

 Methods: cross sectional design, 38 herds NZ wide, 20 clinically normal yearling deer per herd, 757 samples, Bayesian absence of gold standard approach

Test	Sensitivity (%)	Specificity	
Paralisa	19 (10 - 30)	94 (93 – 96)	
Faecal culture	77 (61 - 92)	99 (99 - 100)	

• Conclusion: limited application as a herd classification tool. FC Se high?

Review: Stringer et al 2012

- In support -
 - Valid, well defined approach
 - Reasonable estimates of performance in population of interest
 - Good counterpoint to paper 1
- In critique -
 - Herd classification scheme is unlikely to be implemented by Deer Industry
 - External sourcing of young replacement hinds is not that common
 - Se of FC is high suggesting 'balance of results' may be a little out

Review: Rendel et al 2012

- Aim: develop a protocol for JD control in Landcorp's ~60,000 hind deer herd
- Methods: DEERSelect and Paralisa data for 4 studs (hinds and stags)
- ASREML model to quantify value of test and cull at a variety of test positive rates and JD influenced weaning rates, and growth rate depressions
- ~8,000 hind test results, ~3,500 stag test results
- Initial positive rates to Paralisa were high most at least 15% and up to 37%
- Rates then tended to drop sharply in the following year or 2
- Recommendations
- T&C where JD ↓ weaning rate by >6% & ↓ offspring growth rate
- Where positive rate >20%, T&C if
 - weaning rate ↓ 8% due to JD
 - weaning rate ↓ 6% and growth rates ↓ 30g/day due to JD
- Breeding values for JD heritability of limited value

Review: Rendel et al 2012

In support:

- Shows substantial drop in positive rates in 1-3 years, like DRL suggest
- Suggests intervention with blood testing is worthwhile when prev is high
- Acknowledges lost production must be due to JD to get gains from control
- In critique
- Measurement criteria difficult to define as due to JD
- Does not consider JD-related death rate which is important
- Methodology not clear

Review: O'Brien et al 2013

- Aim: Define performance criteria for qPCR and Paralisa
- Method:
 - Compare qPCR against bovine proficiency panel samples from US National Vet Services Laboratory
 - Correlate qPCR and histopathological lesion score
 - Correlate Paralisa values with qPCR measured shedding levels
- Estimate sensitivity and specificity of Paralisa against qPCR
 72 proficiency panel samples
- 40 qPCR & histo matched samples
- 663 qPCR & paralisa matched samples

Review: O'Brien et al 2013

Results

- qPCR essentially equivalent to culture (correlation of 0.93)
- qPCR and histopathology less correlated (0.73)
- Paralisa sensitivity: 62 98% depending on shedding level identifies most deer shedding MAP, virtually all high shedders
- Paralisa specificity: 70 58% depending on shedding level
 Pays to back up test suspicious results in high value animals with qPCR

Review: O'Brien et al 2013

- In support -
 - Valid, well defined approach
 - Performance stats in the population the test is usually used in
 - Good counterpoint to previous papers
 - Practical application informed by these results

• In critique -

- Lacks confidence intervals
- 'True' estimate of specificity under these conditions

qPCR & Johnin

663 bloods submitted for routine JD testing by Paralisa

qPCR & PPA

663 bloods submitted for routine JD testing by Paralisa

Paralisa

663 bloods submitted for routine JD testing by Paralisa

JDRC study

· Aim:

Compare the ability of the Paralisa and Parachek 2 serum ELISA test to detect faecal shedding as measured by qPCR under conditions typical in typical venison production herds.

JDRC study

- Materials and methods
 - 8 herds identified by JML with potentially high rates of JD
 - 883 (2013) and 1354 (2014) deer tested, virtually all R2 hinds
 - Screened with Paralisa test, positives tested by Parachek2, qPCR & Paralisa
 - Overall screen test prevalence of 8.6% (2013) and 7.8% (2014)
 - Farm-level screen prevalence range 1.4% 49.6%

JDRC study

- Sensitivity results
 - Paralisa consistently higher than Parachek2
 - But difference was small and not statistically significant
 - \bullet Range from ~40% at 10^2 to 100% at 10^6 and 78% at 10^4
- Specificity results
 - Paralisa usually slightly higher than Parachek2
 - But difference was small and not statistically significant
 - Range from ~79% at 10² to 66% at 10⁶ and 69% at 10⁴

JDRC study

Conclusion

- Function of the two blood tests under these conditions is similar
- Both good at picking up highly infectious deer
- Both have false positive rates that require consideration –
- Specifically, is the cost of culling those animals low?

JML database validation

Aim

• Quantify relationship between JDSLN, on-farm JD and farmer concern

JML database validation

Method

- Phone interview of 121 farmers
- Full spectrum of JDSLN rates
- Demographic and farm information
- 1000minds data multiple criteria decision analysis tool
 Indirectly measures farmers value of JD relative to higher weaning rate and higher venison schedule
- Economic estimate of impact of JD on-farm

JML database validation

- Results: respondents fell into three distinct groups -
- Little or no concern about JD
 - low JD-related death rates on-farm and low JD-suspect lesion rates
- Critical concern about JD
 - highest JD-related death rates on-farm and highest JD-suspect lesion rates
- Moderate, high or very high concern regarding JD
 - intermediate JD-related death rates on-farm and moderate JD-suspect lesion rates

JML database validation

JML database validation

- Conclusion:
- Database can be used to identify high-risk farms
- Focus on a JDSLN rate of 2% of higher will prioritise high risk farms
- 77% of farmers felt the impact of JD in their deer was declining or already low
- 64% of farmers felt parasites were an equal or larger issue than JD
- The cost of JD per farm averaged \$3,215, peaked at \$53,015
- Meat inspectors record ~ 70% of JDSLN (previous study)

Case study

Case study background

Farm background

- 500 hind breeding and finishing unit in south Canterbury
- First noticed deaths in 2000
- Deaths peaked in 2005 at 25/yr (5%)
- Beatrix diagnosed JD with 5 post mortems in that same year
- Lesion positive carcasses 8% lighter than those without
- Loss of \$14,000/yr or \$7.31 per deer stock unit in 2005

Peak losses

Intervention

- Implemented Paralisa testing of R2s in 2005
- No other significant initiatives to control JD
- Concurrent decline in clinical rate
- After 7 years deaths down to 1 or 2, loss of \$1,000
- Cost of testing @\$2,200/yr

Impact of blood testing

• Decline in Paralisa positive rate in R2s over 7 years

Annual cost after 7 years

- Cost-benefit? how bad would disease have got?
- What cost for a culled positive animal?

Continued blood testing

• Decline in Paralisa positive rate in R2s over 10 years

Post peak test results

 Annual Paralisa positive rate post peak in disease Draw a trend line through this data

What have we seen?

- Has there been enough shedding to transmit infection?
- How many false positives would we expect?
- Depends on prevalence as p↓ False positives ↑
- Expect deer infected during the peak to go clinical over some years
- Herd owner:

"Clinical JD was worst in 2005. I've seen a downward trend since then with only one hiccup in 2012 (couple of clinical cases after a long wet spell of weather). As the test positives declined, so did the number of clinical cases".

On-farm trends in JD

Trend in JDSLN rate

Trend in JDSLN rate

Nature vs intervention

- Characteristic epidemic outbreak to some degree
- Impact reduced by intervention
- Cost-effectiveness needs case-by-case analysis
- Heavily dependent on extent of initial outbreak

Practical application

- Informing about
 - The very first step...any lesions?
 - Ones and twos as surveillance
 - Diagnosing the cause of a tail end mob
 - Routine selection criteria for replacement hinds intervention
 - · Status of animals in trade
 - Whole herd testing
 - Stag testing prior to sale
 - Diagnosing a high non-specific Tb reactor rate
 - Industry level reporting

Scenario 1: surveillance

- Monitoring to ensure no issue emerging
 - On-going activity as part of animal health management
 - JDLSN rate
 - Offal pit side post-mortem inspections
 - Productive and reproductive performance of deer unit
 - No additional cost
 - Part of good farm management
 - Early detection hugely influential in overall outbreak severity
 - Sensitive and specific with combined vet and farmer input

Scenario 2: routine R2 testing

- Reduce chance of infected hinds entering breeding herd
 - Selection criteria for replacement hinds
 - Common activity as part of animal health management
 - After all other selection criteria have been met to minimize cost
 - Valuable for several years following an outbreak
 - Additional cost
 - Important to consider opportunity cost of false positives
 - Won't detect all infected hinds
 - At what rate do we consider less frequent testing?
 - In combination with surveillance to ensure low prevalence remains

Scenario 3: pre-sale testing

- Blood testing to reduce between farm transmission
 - Moderately effective
 - Stock usually in good health so low prev, low PPV
 - More value in trading stock from previously diseased farms
 - Quarantine/isolate and monitor following transport
 - Combine with other measures of JD risk JML or other testing data
 - Response to a positive result
 - qPCR to quantify shedding
 - Only take negative animals (given other infected deer may well remain)
 - No sale or reduced price

Scenario 4: pre-sale stag testing

- Small numbers of high value young animals
 - Seeking maximum test performance combine ELISA and qPCR (pooled?)
 - · Price less of an issue
 - Stock usually in fine health with minimal stress
 - Young age means disease unlikely to have developed
 - · May be more merit in testing them following their first rut
 - Combine with other measures of JD risk JML or other testing data
 - Valuable supporting info from the history of existing on-farm JD control

Scenario 5: stock class level testing

- Blood testing to reduce impact of outbreak
 - Early diagnosis and intervention will minimize length and severity of outbreak
 - Focus on stock class and mobs with highest losses
 - Work outward from there comparing each subsequent lot of results
 - Plot pattern of the focus of infection in the herd
 - Accept removing some false negatives to minimize risk as far and fast as possible
 - Immediate removal from herd of test positive animals

Scenario 6: youngest stock

- Somewhat dependent on disease levels for farm in question
- \bullet 9 months old minimum age, recommended for major issue farms
 - Going into winter to minimize seasonal impact on clinical rate
- Post winter for farms with less issue more time for disease and immune response to develop with winter
- Overall minimizing contamination
- Of course can gPCR at any time
- Case of a fawn in April shedding 2 million bugs/g (qPCR)

Scenario 7: Th reactors

- Test non-specific Tb reactors for JD
- Good opportunity for surveillance
 - Likely reactors have been exposed to something focused way to check for JD
- Potential selection criteria in some cases

Estimated cost model

Class	Year	Prev	Test(s)	Cost (\$400/deer)	Per high shedder	Cost (\$100/deer)
1000 hinds	1	5 → 1.1	Paralisa	\$171,000	\$4,400	
	2	$1.1 \rightarrow 0.2$	Paralisa	\$165,000	\$17,400	
1000 hinds	1	$5 \rightarrow 1.1$	P & qPCR	\$45,000	\$1,165	
	2	1.1 → 0.2	P & qPCR	\$33,000	\$3,807	
200 R2s	1	5 → 1.1	Paralisa	\$34,000	\$4,390	\$10,810
	2	2.5 → 0.6	Paralisa	\$33,000	\$7,800	\$10,605
	3	1 → 0.2	Paralisa	\$33,000	\$9,185	\$10,482
200 R2s	1	5 → 1.1	P & qPCR	\$9,000	\$1,165	\$6,748
	2	2.5 → 0.6	P & qPCR	\$7,500	\$1,873	\$6,294
	3	1 → 0.2	P & qPCR	\$6,700	\$3,330	\$6,060

Working through examples

- Routine testing of R2s over 5 years
 - Condition of interest:?
 - How many deer tested
 - How many positives
 - How many false positives
- Stag pre-sale testing over 3 years
 - · Condition of interest: minimal chance of developing disease
 - Sensitivity
 - Specificity
 - · Likelihood removed genuinely
- A single whole herd test
 - Condition of interest: ?
 - Sensitivity and specificity
 - How many positive identified, how many false positive?

Conclusion

- All available tests are useful in the control of JD when used appropriately
- Get the mix of tests right for best cost-benefit ratio
- Use scenarios as a guideline, advice always available from JML and DRL
- For maximum benefit, integrate with wider herd health and farm management
- Booklet of suggested guidelines to follow