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LIC report for the JDRC 

Executive Summary 

• A strategy for applying animals to cross-validation folds was identified and implemented. 

• The relationship between animals within a fold was increased to twice that of animals 

outside the fold. 

• The predictive power of the model as measured by the area under the ROC curve has 

decreased to 0.887 from 0.906. 

• The model is proving to be relatively robust but predictions of susceptibility to Johnes’ 

disease continue to be better than expected based on the estimated heritability of 0.22. 

• Given the results the proposed validation study becomes more important in providing 

confidence in the technique. LIC is possibly interested in investing in this study to expand it. 

Summary of progress 
The JDRC Science review panel suggested that the predictive power of the test is too high given the 

estimated heritability of the trait (~0.22). The suspected cause was having closely related animals in 

both the training & test groups.  To address this issue, k-means clustering of a decomposed A matrix 

was used to optimise the allocation of animals to the 10 folds such that animals within a fold are 

more related to each other than animals in the other 9 folds. A linear programming approach was 

then taken to re-balance the folds to the same size. 

The results of this allocation (Tables 1 & 2) show that, relative to randomly assigning animals to 

folds, the balanced k-means approach was able significantly increase the relationships between 

animals in the same fold (0.073 vs 0.041), and decrease the relationships between animals in a fold 

and its complement (0.037 vs 0.031). 

Table 1. Fold size and average relationship of a fold with the fold’s complement by strategy for allocating animals to test 

folds. 

 Fold size Average relationship with other folds 

Fold Random k-means 

Balanced 

k-means Random k-means 

Balanced  

k-means 

1 840 605 840 0.041 0.046 0.040 

2 840 305 840 0.041 0.044 0.045 

3 840 883 840 0.041 0.045 0.045 

4 840 664 840 0.040 0.047 0.042 

5 840 164 840 0.040 0.018 0.043 

6 840 2087 840 0.040 0.018 0.019 

7 840 416 840 0.041 0.027 0.023 

8 840 728 840 0.041 0.043 0.042 
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9 840 2186 840 0.040 0.041 0.046 

10 844 366 844 0.041 0.022 0.026 
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Table 2. Degree of relationship between each fold and its complement averaged over 10 folds. 

 Relationship 

 between 

folds 

within 

fold 

Random 0.041 0.041 

k-means 0.035 0.120 

Balanced k-means 0.037 0.073 

The tenfold cross-validation study was then re-run to determine the accuracy with which the data 

could be used to predict Johne’s status based on an animal’s genomic profile. The software package 

GenSel (Fernando and Garrick, Iowa State University), was used to fit a Bayes B model using 1 

megabase windows across the genome. The model estimated the genomic merit for the different 

combinations of SNP in each window for each of the 10 training populations and then used those 

estimates to predict the actual Johne’s status of the animals in the corresponding 10 test 

populations. 

Figures 1 & 2 show that there is no clear relationship between predicted susceptibility to Johnes’ and 

either age or Jersey proportion, suggesting that these factors have been successfully accounted for 

in the analysis and that the predicted merit is not just a proxy for breed or age. 

Figure 1. Genomic merit for by age 
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Figure 2. Genomic merit for susceptibility to Johnes’ disease by Jersey proportion. 

 

Figures 3 & 4 show that the JD+ group has a significantly higher mean for predicted merit for 

susceptibility to JD than the Control group, but that the populations overlap.  

Figure 3. Distribution of predicted genomic merit of Control and Johne’s disease positive (JD+) animals for JD 

susceptibility 
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Figure 4. Notched boxplot of the predicted genomic merit of Control and Johne's postive animals for Johne's 

susceptibility. 

 

 

Figure 5. Receiver operating characteristics curve for tenfold cross-validation. The coloured line represents the average 

of the 10 training-testing datasets shown in grey. 

 

The receiver operating characteristic curves (Figure 5) show that the allocation of more-related 

animals within each fold has increased the variability of the training-test datasets relative to the 

previous analysis and has decreased the Area Under the Curve (AUC) from 0.906 to 0.887. If a true 

positive and a true negative animal were chosen at random, the test would correctly rank them 

88.7% of the time. 

The effect of setting thresholds on the data from Figure 5 is shown in Table 3. A lower threshold 

value of -0.22 would correctly identify 40% of animals as non-susceptible, while incorrectly 

identifying 3.9% of JD+ animals as non-susceptible. 

An upper threshold of 0.38 would correctly identify 60% of JD+ animals as susceptible, while 

identifying approximately 4% of control animals as susceptible. The number of incorrectly assigned 

AUC = 0.887 
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control animals will be less than 4% as some of them would likely have tested positive for JD 

(prevalence of JD in NZ is about 1%). 

The above thresholds would have classified 49% of the population as either susceptible or not-

susceptible to JD, while leaving 51% of the population uncategorised. 

Table 3. Proportion of true-positive (TP), false-positive (FP), true-negative (TN) and false-negative (FN) animals classified 

by example thresholds. 

Threshold Proportion classified 

Lower Upper TP FP TN FN All 

-0.22 0.38 0.60 0.04 0.40 0.04 0.49 

-0.03 0.27 0.70 0.08 0.65 0.10 0.75 

 


