Bovine DNA Archive – Genomics Study

· Genomics Approach

- Collect and store DNA samples from JD case animals:
 2000 Johne's positive cows identified using ELISA
 on milk sample screening, followed by serum confirmation
- Phenotype
- Existing LIC population data (4000+) used as control data
- 400 test-negative sire-matched cows from case herds as matched control
- Genomics analysis requires within-breed approach
- 50000+ SNP panel JD case cows and matched controls

Targeted Herd Selection

- Herd testing at least 3 times per annum (possibly 2x)
 - need access to HT samples primarily late spring/summer
- Herd size aim for larger herds for efficiency
 - given likely low prevalence, low reactor yield / herd
- Breed composition
 - prioritize herds with high proportion single breed to maximize 'purebred' Jersey & Friesian case cows
 - FxJ crossbreed
 - large proportion of NZ dairy population is FxJ ie relevant 'breed'
 - more difficult to target breeds at herd selection

Targeted Herd Selection: JD Culling Data

- 10 seasons of good JD culling data ~ up to 1000 herds
- pilot bulk milk screen suggests relevant data see later

season	JD culling	total NZ	herd	RR vs 1 st 3 season mean		mean herd size	
	herds	herds	prevalence	RR	99% CI	JD cull	national
1998 / 99	1 101	14 362	7.67%	0.98	F	319	229
1999 / 00	1 079	13 861	7.78%	1.00		350	236
2000 / 01	1 108	13 892	7.98%	1.02		362	251
2001 / 02	1 168	13 649	8.56%	1.10	(0.99 - 1.22)	394	271
2002 / 03	1 170	13 140	8.90%	1.14	(1.03 - 1.27)	423	285
2003 / 04	1 018	12 751	7.98%	1.02	(0.92 - 1.14)	435	302
2004 / 05	995	12 271	8.11%	1.04	(0.93 - 1.16)	470	315
2005 / 06	1 059	11 883	8.91%	1.14	(1.03 - 1.27)	482	322
2006 / 07	1 107	11 630	9.52%	1.22	(1.10 - 1.35)	505	337
average	1 089	13 049	8.35%			415	283

· breed will limit useable herds

based on JD culling on national dairy cow database target regions with higher herd & within-herd JD rates possibly limited application overall avoid Northland breed effect apparent vat test?

Targeted Herd Selection: Vat Milk Pre-Screen

- Pooling experience suggests possible value (later)
- Literature indicative of possibilities

(v Weering and Duthie)

- Pilot study carried out on >400 herds
 - low-risk control = low prevalence regions
 - high-risk case = JD culls (preferably 2+ seasons) plus based on high-risk region
- Alternate classification based on culling only, no region:
 JD-cull herds vs non-JD-culling herds

Vat Milk Pre-Screen: Pilot Study Results

- Distinct right-shift of case herds vs control herds
 14% case vs 1.4% controls > 0.1(≅ 5-10% sero-prev?)
 - non-culling herds from high-risk region: no right shift

possibly a poor predictor for Friesian herds (or low prev!) but insufficient data

Vat Milk Pre-Screen: Pilot Study Continued

- Vat milk pre-screen is clearly a valuable tool!
- An efficient method to screen wider herd population if needed including 'low-risk' regions, smaller herds etc
- Currently using pilot study results & data to select herds for initial cow selection by pool HT screen ...
 - focus on herds with SP >0.1
 - but also selection of herds across spectrum 0.0 to 0.1 to characterize relationship between vat test & the pool prevalence
 - may employ variable cut-off eg small herd or low prev region raise c/o
 - any case cows identified will be sampled for project

Targeted Cow Selection: Breed Pre-requisite

- · Genomics study requires defined breeds only
 - FxJ option: large proportion of NZ dairy cow population is FxJ (33% vs 45% Friesian and 14% Jersey – wider definition)
- Selection based on national cow database
 - Friesian and Jersey: >13/16th of specified breed
 - FxJ crossbreed: F & J only and <12/16th of either breed
- Challenges to obtain case numbers efficiently
 - Friesian: good 'purebred' cow / herd #s, but low JD cull rates

QLIC

Jersey: higher JD culling but small total numbers

FxJ: intermediate

(relative JD cull risk for F: J: FxJ = 1:4.3:1.8)

Targeted Cow Selection: Age (JD Cull Rates) · JD deaths and cull rates increase with age according to literature and NZ dairy JD culling data Clinical JD in young cattle (~2y) linked to high challenge (but early clinical 16% progression possibly 3.00 affected by infection / 2.50 disease susceptibility?) 2.00 10% max risk 5-10 years 1.50 ● max cow #s 3 - 8 years

Targeted Cow Selection: Age (ELISA Sero)

- Similar distribution seen with ELISA serology (literature and experience of testing 2-year-old heifers vs older cows) suggests reactors amongst 2 year olds are extremely rare
- 2002 & 2008 data (excludes 2 year olds) peak risk 5+ years:

Targeted Cow Selection: Age

- Need to balance:
 - efficiency of low clinical / ELISA reactor rates amongst young stock
 - with larger total numbers and potential pool, as well as
 - possible genetic predispositions expressed as age of onset
- So current thinking: exclude only 2-year old heifers
- Ongoing validation work in conjunction with vat pilot trial may shed additional light on impact of 3 year old cows (in or out)

Pool Test Strategy for HT Milk Screen

- JD ELISA kits (Prionics ex CSL & Pourquier) have poor sensitivity (SE) but near-perfect specificity (SP)
- ELISA performance as pool tests in doubt, therefore designed study to assess test performance with pooling:
 - 1400 lactation 2+ cows from 3 JD-history herds in N & S Islands
 - captured HT milk samples in autumn 2008
 - test all individual HT milks by ELISA (2 kits)
 - pool HT samples in 1:10 and tested
 - assessed ability of pool test to detect reactor cows

Pool Test Strategy for HT Milk - Performance

- Only Pourquier ELISA kit showed potential as pool test
- Test performance assessed against individual samples
 - using combined Pourquier / Prionics interpretation
 - as well as scaled cut-off points on individual Pourquier ELISA

select cut-off for pool test to adjust SE to detect reactors vs SP to reduce retesting rate

Pool Test Strategy for HT Milk - Advantages

- ~60-70% fewer tests required than if individual testing
- Individual screening #s are highly sensitive to actual with-in herd sero-prevalence, test SE and changes to test cut-off,
- while pool → individual testing is much more robust with little impact of raising cut-off on total number test kits needed
- which allows us to better target more advanced JD cows as JD cases for the genomics study.

Expected Prevalence & ELISA Case Numbers

- 2002 study JD history herds: 2.6% milk \Rightarrow 2.3% serial SE (no breed effect on ELISA)
- 2008 study mixed JD history: 1.9% milk ⇒ 1.7% serial SE
- With bulk milk herd targetting and age restriction, expect ~2% sero-prevalence.
- So:
 - require at least 100 000 cows for primary HT screen
 - which will be a challenge with breed requirements

Additional Confirmation Test (FC + PCR) ?

- All JD tests are prone to wide range of performance with very low sensitivity in pre-clinical stage, but rising with advancing stage of JD infection.
- Generally SE in clinical stages of JD very high for both faecal cultures and ELISAs (Pourquier).
- Young ELISA+ / FC- cow likely \Rightarrow heavy shedder / clinical
- Specificity is excellent guaranteed with raised cut-off.
- Serial testing will impact on final sensitivity and costs.

ELISA vs Faecal Culture

- · What phenotype is required for the study?
- ELISA SE ranges from ~15% in early MAP to ~90% in clinical JD
 - so we expect good agreement with advanced JD phenotype esp with raised cut-off we already apply strong selection
 - suggestion in literature that antibody response occurs if cell immunity fails, ie presence of humoral immunity is reflection of raised susceptibility to JD
- · Faecal culture / PCR:
 - Risk: If used as final selection tool, there is a risk if agreement with ELISA is sub-optimal (because imperfect SE of <u>both</u> tests), that costs escalate greatly
 - Alternatively, FC / PCR could be used as additional phenotype information for JD cases selected on ELISA only – then extra expense restricted to FC cost
- · Essentially ELISA should suffice.

400 Matched Controls

- · Match by:
 - herd select from herds with JD cases
 - age minimum age or control must be at least as old as case
 - sire
- Selection by:
 - serum ELISA
 - faecal culture need to minimize chance of JD
 - long-term follow-up

Questions

- Breed
 - may be challenging with narrow definition
 - crossbreed Friesian x Jersey
- Faecal culture options
 - not needed or
 - additional phenotype or
 - use as definitive phenotype
- Matched controls
 - any additional data required

