

Johnes Disease Project Update

May 2011

Penny Back, Hinrich Voges, Richard Spelman, Ric Sherlock Animal Health Lab

Bovine DNA Archive

Genomics Approach

Phenotype

Collect and store DNA samples from JD case animals:
 2000 Johne's positive cows identified using ELISA
 on milk sample screening, followed by serum confirmation

Genotype

- 777k SNP panel for the affected Johne's animals
- Existing LIC population data (23,000+) used as control data

Delivering genomic technology

- Semen 80%+ of cows in NZ AI
 - LIC has 80% market share
 - Genomic technology was introduced in 2007
 - 40%+ of semen used is DNA proven
- Genotyping today
 - 200,000 animals/yr parentage tested
 - Possibility of adding a Johne's disease marker
 - Expected to be less efficient than breeding
- Screening test for farmers
 - Could be developed by refining current system

Method of Identification of JD-case Animals

Vat milk pre-screen and pooled herd test strategy:

- Vat milk pre-screen is a valuable tool.
- An efficient method to screen wider herd population if needed including 'low-risk' regions, smaller herds etc
- Individual samples pooled (10:1)
 - If pool shows reactor, individual samples analysed
- ~60-70% fewer tests required than if individual testing
- Pool → individual testing is much more robust with little impact of raising cut-off on total number of kits needed
- Allows targeting of more advanced JD cows for the genomics study

Screening so far....(Year 1-2)

- Year 1
 - milk positive cows: blood sample + faecal culture
- Year 2
 - milk positive cows: blood sample only
 - milk negative cows: blood sample + faecal culture

	Milk	Blood samples		Faecal Culture	
	Samples				
	Positive	Positive	Negative	Positive	Negative
Year 1	287	250	37	216	71
Year 2	Positive 1587	1357	230		
	Negative 101	3	98	24	70

Vat milk pre-screen and herd test screening 2011

Prevalence rates

Positive: S/P ratio > 0.1 prevalence = 3%

- Suspect: S/P ratio >0.05 prevalence = 1.5 - 2%

Check: S/P ratio >0.04 prevalence = 0.5%

- Used the remaining herds from the original data extract + repeat herds
- Selected 390 for vat test screen
- 40 herds to test on above criteria + 20 repeat herds + 5 new requests
 - From 33 herds, 160 milk positive cows identified so far

Samples for Genotyping

- Extracted DNA from 1650 samples from blood positive cows
- The genotyping phase of the project commenced early
- 1440 samples sent for genotyping Nov 2010
 Genotypes received Dec 2010

Johnes-positive Samples by Breed

Breed	Number
Other Cross	41
Holstein Friesian	258
Jersey	660
Ayrshire	1
KiwiCross	364

Johnes-positive Samples by Age

Age	Number
15	1
13	5
12	9
11	14
10	34
9	76
8	127
7	162
6	193
5	233
4	253
3	155
2	62

Johnes-positive Samples by Region

Region	Number
Northland	40
Waikato	272
Bay of Plenty	34
Taranaki	322
Wellington/Hawkes Bay	130
South Island	526

Farmers perception

- How farmers view the herd test screening approach
 - Industry-good research project
 - Tool to reduce JD in herd that they would pay for
- Demand for this service
 - Small at present 25 of 350 herds repeat tested
 - But new requests from 'word of mouth'
 - Vets expressing interest for use for clients with JD problem

Cost

- happy to pay the equivalent of 1-2 first calving heifers due to cost of raising replacements (~\$2000)
- Short-term ~ 3 years

Genotypes

- 1324 Johnes-positive HD genotypes
- High Density panel (HD)
 - Illumina (777k SNPs)
 - Released July 2010
 - Used within LIC genomics programme
 - May allow cross-breed analysis

QC Processing

- Sample exclusion criteria:
 - Call rate < 87%
 - Heterozygous Rate<20% or >40%
- Any animals failing parentage (sire) retained
- 711955 SNPs retained after QC
 - -MAF > 2%
 - Autosomal
 - Known location

Call rates

Method of Analysis

- Test for SNP association with susceptibility to Johnes disease
 - compare allele frequencies:
 infected cows vs population (Wellcome Trust approach)
- Estimate population allele frequency from existing LIC population data
 - 23,000 genotypes imputed to HD
 - Imputation of HD genotypes from 50k has an accuracy of 99.5%

Challenge: To choose appropriate control population

Detecting SNPs of interest

Johnes-positive Genotypes by Sires

+ve Daughters	Count of Sires
>49	3
20-49	7
10-19	21
5-9	23
<5	282

- 336 sires with Johnes +ve daughters
- 10 sires accounted for 32.3% of the positive daughters
- 9 of top 10 sires have HD genotypes

+ve Daughters	Count of MG Sires
>49	0
20-49	10
10-19	20
5-9	25
<5	345

- 400 Maternal grand-sires with Johnes +ve daughters
- 10 sires accounted for 23.7% of the positive daughters
- 3 of top 5 MG sires have HD genotypes

Preliminary Analysis

- Analysis of chromosome 20
- Using existing LIC HD genotypes as Control popln

Breed	HD Control	Case (Johnes+ve)
Other Cross	0	41
Holstein Friesian	999	258
Jersey	447	660
Ayrshire	0	1
KiwiCross	11	364
Total	1457	1324

Chromosome 20

Chromosome 20

Chromosome 6

Where to from here?

- Collect and genotype remaining Johnes +ve samples
- Add additional 20,000 imputed genotypes to control population
- Examine for evidence of stratification
 - Breed/Sires/Age
- Refine genomic analysis

Summary

- Sample collection near completion
- Genotyping of ~70% of the samples has been completed
 - Ahead of schedule
 - Rest of samples in the next couple of months (HD)
- Initial analysis of the data undertaken
 - Refinement of the control population
- Outcomes can be transferred via semen and genotyping tests

