SOLiD-SAGE analysis of the Deer Transcriptome

Rudiger Brauning (speaker), Paul Maclean, Nauman Maqbool, Jo Stanton, Anar Khan and Colin Mackintosh.

Transcriptomics

- Basically "what is expressed"
- Need to work out what you want from it:
 - Differential expression of known genes?
 - Find new/novel transcripts?
 - Accuracy?

Three options are considered here

Summary of SOLiD-SAGE

Advantages:

- Gives 1 tag (25 bp fragment) per transcript (in theory).
 - No transcript length bias
 - Less sequence real estate being taken up by longer sequences
 - These facilitate statistical evaluation greatly
- Large dynamic range (in theory)

Disadvantages:

- Need a good reference sequence dataset
- Short tags reduce unique mappings
- Can't detect new transcripts/genes/MiRNAs

Summary of RNA-seq

Advantages:

- Full length transcripts can be assembled from reads
- Longer reads make mapping relatively straightforward
- Lots of tools and support available
- Is the favorite protocol of the research community
- Sequencing of MicroRNAs

Disadvantages:

- Many reads representing one transcript
 - Length bias: Longer transcripts get more reads than shorter transcripts
 - Less sequencing real—estate to detect genes expressed at a low level

Summary of Microarray

Advantages:

- Robust, well-established methods for analysis
- Ease of analysis
- Cheap: many replicates easily affordable

Disadvantages:

- Limited to what is on the array
 - Limited number of species
 - Can't detect new transcripts/genes/MiRNAs
- Low dynamic range

SOLiD-SAGE: How it works

Emulsion PCR and Sequencing by ligation

mRNA-SEQ: How it works

SOLiD Reads

Two files:

- Csfasta
 - Format:

```
>559_31_72_F3
T2303..22231..2332113.322
```

- Di-base encoding see next slide
- Qual
 - Format:

```
>559_31_72_F3
26 18 18 5 -1 -1 8 22 9 18 21 -1 -1 5 11 16 19 2 11 17 -1 19 13 3
```

SOLiD di-base encoding

T 2 3 1 3 0 0 1 0 1 0 0 0 3 3 3 1 T CGTAAAACCAAAATAT

SOLiD di-base encoding Part 2

Keep alignments in colourspace!

This makes it difficult to check alignments

Data QC

- Important for all sequencing platforms and methods
- Quininityeness

Tag Extraction

Reference databases

- AgResearch Deer and Elk contigs
- ENSEMBL Cow transcripts
- Cow genome version 4.2
- Deer genome version 1

Reduced Reference

- What?
- Why? G
 - only sequences that, in theory, result from the DGE-tag protocol using the DpnII restriction enzyme.

Mapping strategy

Tag Mapping

- PerM: Efficient mapping of short reads accomplished with periodic full sensitive spaced seeds
 - Fast
 - Easy to use
 - Designed for SOLiD data
 - Better results than default SOLiD software

Tag Aggregation

- In theory, the SOLiD-SAGE protocol gives 1 tag (25 bp fragment) per transcript
- This doesn't quite always happen.
 - SNPs may prevent enzymes from cutting
 - Different alleles from deer (2N)
- Solution: Aggregate all tags that map to the reduced reference of a gene.

Mapping Results

- ~60% mapping, mostly unique
 - Reasons:
 - Reference sequences not perfect
 - Most reads were unique (searching of unmapped reads returned nothing)
- Significant differential gene expression of expected genes and gene pathways
- Insights into Johne's disease in deer
- To follow up with Illumina sequencing
 - Transcriptome assembly
 - Comparison of differential gene expression

Summary

- Different sequencing protocols require different analysis approaches
- There is much to consider in any NGS experiment
- All sequencing protocols have advantages and disadvantages

Acknowledgements:

Thanks!

